
1

A Reconstruction ToolkitA Reconstruction Toolkit
RecPackRecPack

Jose Angel Hernando
(CERN, Switzerland)

In collaboration with:
Anselmo Cervera Villanueva (Geneve, Switzerland)
Juan José Gómez Cadenas (Valencia, Spain)

ACAT03, @ KEK, 2003/12/02ACAT03, @ KEK, 2003/12/02

the HEP the HEP MontjuMontjuïïcc data fountaindata fountain

Measurements

tracks

(fitted) tracks

Vertexes

Particles

Montjuic data fountain: data & tools that we use in any reconstruction program in HEP:
– Data: information classes
– Tools: operate on the data classes

These classes admit an interface
Common tools of fitting & matching are general and run in these interfaces
Users can implement (derive) their own classes

– I.e, data: geometry & measurements, matching tools Montjuic is a mountain in
Barcelona with a beautiful
and always changing fall and
fountain

Matching

Matching

Fitting

Fitting

Geometry

Calibration

RecPack

Data •Tool

User

User User

PID

What is What is RecPackRecPack??
Idea:

– Most of the tracking reconstruction
programs (pattern & fitting) done in
HEP use common algorithms.

I.e Kalman Filter
Helix Model

– Code the common algorithms in a
general package

RecPack is a C++ toolkit :
– To reconstruct & fit trajectories.
– Fit trajectories to a model and

estimate model parameters and
errors

Ie. Using the Kalman Filter
– Match measurements & trajectories
– Navigate states in a n-dimensional

space

Modular, extendible, friendly
– Different modules light connected

Fitting, Model, Geometry &
Navigation, Matching

– Extendible: “developer” user can
implement its own data classes or
tools from interfaces.

– Friendly: “client” user interacts via
an unique Manager

and general…
– It can be apply to any dynamic

system:
Evolution of a state in a space
according with a model
Fitting a trajectory to a model

– Ballistic problems, stock market,…

RecPackRecPack Manager & ServicesManager & Services

The Manager:

User access to the
services

The services:

• 1. store of data &
tools

• 2. provide the
package functionality

Geometry

1. Models:
Sraight line,
Helix in B field

2. Noisers: MS

1. Access to models
2. Access to model tools that operate on states

equation , propagator
surface intersector, projectors
noisers

Model

1. Navigators
2. Inspectors (Helix, MS

noiser, counters)

1. Access to Navigators
2. propagate states to any surface and length
3. Access to Inspectors

Navigation

1. Least squares
2. Kalman Filter

1. Track fitting,
2. Vertex fittingFitting

1. matching trajectory-trajectory
2. matching trajectory-measurement
3. pattern recognition methods

Matching

Simulation 1. Simulate a trajectory & measurements

serviceservice
namename

1. Access to geometry
Volume & surfaces
Properties of volumes and surfaces <T>

1. RecPack Simulator

elementselementsmethodsmethods

ManagerManager

1. Access to services

•Extensions
•(more services)

•Extensions
•(more methods)

•Extensions
•(more elements)

Geometry serviceGeometry service

my_ring

my_tube

add_volume(“my_box”, “box3D”, pos, axes, size);
add_surface(“my_plane”, “rectangle”, pos, axes, size);

tube
sphere
….

ring
ring_sector
cylinder_sector
…

volumes may have any dimension
dsurface = dvolume -1

Access to geometrical setups:
– Volumes & surfaces into a mother volume
– Associated properties (template) any

volume or surface

Geometry

add_volume_to_volume(“my_box”, “my_tube”, “tube”, pos, axes, size);
add_surface_to_volume(“my_box”, “my_ring”, “ring”, pos, axes, size);

my_box
my_plane

Navigation serviceNavigation service
Navigator:

– propagate an state in a setup via steps
– At each step inspectors are called

Inspectors:
– They do external operations at each step:

User counters,
Modify propagation (looking at material of the volume),…

– Can be associated to any surface or volume

Navigation

propagate(state, surface);
User can:

– implement analytic intersection for a given:
model and surface.

– Establish a sequence of surfaces and
volumes to intersect!

User can navigate in parallel setups:
Material (X0),
Physical (B field)
User setup(counters)

my_world

Inspector in surfaces:
store the hit position

end state

surface

state

Data Interfaces ClassesData Interfaces Classes

This classes are interfaces
(generic)

– Vector of measures
– Resolution matrix
ie: (x,y) measurement

– Vector of parameters
– Covariance matrix
ie: straight line (x,y,x’,y’)

– A collection of states
– A collection of

measurements
– The agreement between

both
ie: (LSQ fit to a straight line)

IMeasurement

IState

ITrajectory
IMeasurement

residual

fittedraw

ITrajectory

IPoint

IState

ISurface

(raw or fitted)
IVertex

IMeasurement

Model serviceModel service

select_model(“helix”);
Automatically updates the model dependent

services

Access to model tools:
– Equation
– Projectors (for fitting & matching)
– Propagator, Surface intersectors (to help navigate)
– conversion

Model

Equation The equation defines the model!

– Evolution of the state vector
(vector&) vector(double length);

– A “ray” in the geometrical space
(vector&) position(double length);
(vector&) direction(double length);

Evolution of the state in the parameter space

Evolution of the state in the geometrical space
(all what we need to navigate!)

Model Tools: projectorsModel Tools: projectors

– A tool that depends on model &
measurement type

– Project an state into a measurement:

– State is in the model parameters space
Helix: (x,y,x’,y’,q/p)

– Measurement is in an internal space
(u,v) rotated with respect (x,y) an angle ϕ

– The projection “reduces” the information
of the state vector to be compared with the
measurement

In the linear is a matrix H

−

=

pq
y
x
y
x

v
u

/
'
'

000cossin
000sincos

ϕϕ
ϕϕ

Projector

residual

IMeasurement

IState

Projectors deals with alignment & calibration

The projection converts “global” to
“local”

Fitter: Fitter: KalmanKalman FilterFilter
Kalman Filter:

– Used for track fitting by most of HEP experiments
– Easy to include random noise processes (ms) and systematic effects (eloss)
– It is a local and incremental fit (dynamic states)

We can do simultaneously fitting & patter recognition

seed prediction

filter

smooth=filter
smoothsmooth

TFCFC =P

vFvvv rrrr
= →= P

linear
P)f(

noise matrix
(ms)

Pvrvr

Q+

mwr
vHwvw

rrr

rrrr

−=

= →= linear)h(

IPropagator

IProjector

transport matrix

Projection matrix
random noise

(multiple scattering) residual = projection - measurement

Example of model toolsExample of model tools

sphere

cylinder

plane

surface intersectors

rφsphere_sector

3D
cylinder

cylinder_sector
Energy losshelix in variable B

field

2D
rectangle

ring
energy lossmultiple

scattering
straight line in any

dimension

Projectorsfinite surfacesSystematic effect
estimators

Noise
estimators

Equation

Adding your model is straight forward!

Model

2Dgreenearth surfacewind
wind

fluctuationsparabola

Matching and simulation serviceMatching and simulation service

Using:
– Navigation & Fitting & Model services
– Model: propagator & projectors

We can construct new services:
Matching & Simulation

Matching Simulation

match(trajectory, trajectory);
match(trajectory, measurement);
match(state,measurement);
match(trajectory, state);

simulate_trajectory(trajectory, seed_state);

simulate measurements along a
trajectory given a seed state

Future plans: interface with Geant4

Use for pattern recognition
Match using the projectors
Future plans: implement pattern

recognition “logics”

Example 1Example 1

Fit a single track in a single volume and compute the path length to a
given surface

// Create a track and fill it with measurements
BITrajectory track;
for (i=0; i<4 ; i++){

IMeasurement& meas[i] = BIMeasurement(pos, pos_error, “xy”)
track.add_measurement(meas[i]);

}
// Fit the track by Kalman
fitting_svc().fit(“Kalman”, track, seed_state);

// Retrieve a previously defined surface
ISurface& surf = geometry_svc().surface(“my_surf”);

// Computes the path length to the specified surface
navigation_svc().path_legth(track, surf, length);

// Print out the path lenght
std::cout << “path length = “ << legth << std::endl;

c++ codec++ codemy_surffitted track

path length

intersection
point

raw track

path length = 28 cm

Example 2Example 2

Fit a single track in several volumes with different models and
different measurement types

// Create a track and fill it with 3D measurements
BITrajectory track1;
for (i=0; i<5 ; i++){

IMeasurement& meas[i] = BIMeasurement(pos, pos_error, “xyz”)
track1.add_measurement(meas[i]);

}
// Create a track and fill it with 2D measurements
BITrajectory track2;
for (i=0; i<4 ; i++){

IMeasurement& meas[i] = BIMeasurement(pos, pos_error, “xy”)
track2.add_measurement(meas[i]);

}
// Fit the second track by Least squares
fitting_svc().fit(“LSQ”, track2);

// Merge both tracks
track1.add_segment(track2);

// Fit the whole track by Kalman using the previous fit as seed
fitting_svc().fit(“Kalman”, track1, track2.first_state());

c++ codec++ code

B

3D meas

z

yx

2D meas

LSQ fit

Kalman fit

Example 3Example 3

Simulate a particle traversing several volumes with Geant4, reconstruct tracks in
“tracker” and match with “TOF”

// Set the Geant4 simulator
simulation_svc().set_simulator(“Geant4”);

// Simulate a track
simulation_svc().simulate_measurements(simul_seed);
// Find tracks in “tracker” applying predefined PR logic
matching_svc().set_property(“tracker”, “PRLogic”, “planar”);
matching_svc().find_trajectories(“tracker” , track_vector);

// Fit the first track by Kalman
fitting_svc().fit(“Kalman”, track_vector[0], fit_seed);

// Look for the best matching hit in the TOF
matching_svc().best_matching_measurement(“TOF”, track_vector[0], meas);

TOF
tracker

simulation seed

best match

raw track

fitted track

measurements

c++ codec++ code
For future plans For future plans

ClientsClients

RecPackRecPack was born in HARPHARP (CERN)
MICEMICE (RAL)RecPackRecPack--11

RecPack0RecPack0

SciBarSciBar detector, which is part of K2KK2K (Japan)
Design of future neutrino experiments: HERO
Trigger studies on LHCbLHCb (CERN)
Open vertex detector at LHCb (CERN)

• Data taken finished
• On going analysis

RecPackRecPack--00

unique library: requires only CLHEP

source in: http//evalu29.ific.uv.es

compile: automake, or CMT

Linux gcc2.95.2, gcc3.2

some examples with GAUDI

ConclusionsConclusions

RecPack is a toolkit to built a reconstruction program:
– Does: Navigation, Matching & Fitting

Its modular structure allows extensions in any direction

It is setup independent
It is being successfully used by four HEP experiments
If you want to play, please contact us:

RecPackRecPack

data types volumes, surfaces, measurements, …
tools models, navigators, simulators, …

Jose.Angel.Hernando@cern.ch
Anselmo.Cervera@cern.ch

Juan.Jose.Gomez.Cadenas@cern.ch

	the HEP Montjuïc data fountain
	What is RecPack?
	RecPack Manager & Services
	Geometry service
	Navigation service
	Data Interfaces Classes
	Model service
	Model Tools: projectors
	Fitter: Kalman Filter
	Example of model tools
	Matching and simulation service
	Example 1
	Example 2
	Example 3
	Clients
	Conclusions

